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Velocity correlations in granular materials
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A system of inelastic hard disks in a thin pipe capped by hot walls is studied with the aim of investigating
velocity correlations between particles. Two effects lead to such correlations: inelastic collisions help to build
localized correlations, while momentum conservation and diffusion produce long ranged correlations. In the
quasielastic limit, the velocity correlation is weak, but it is still important since it is of the same order as the
deviation from uniformity. For systems with stronger inelasticity, the pipe contains a clump of particles in
highly correlated motion. A theory with empirical parameters is developed. This theory is composed of
equations similar to the usual hydrodynamic laws of conservation of particles, energy, and momentum. Nu-
merical results show that the theory describes the dynamics satisfactorily in the quasielastic limit, though only
qualitatively for stronger inelasticityS1063-651X98)06512-X]

PACS numbd(s): 81.05.Rm, 05.20.Dd, 47.50d

[. INTRODUCTION lated velocities. We therefore ask: how important are these
correlations and how are they built up?

A granular system normally consists of a large number of In this paper, we investigate the building up of correla-
particles colliding with one another and losing a little energytions between velocities of grains. There are two mecha-
in each collision. If such a system is shaken to keep it inisms upon which correlations can be built up. One mecha-
motion, its dynamics resembles that of fluids, in that theniSm is due to the inelastic collisions between particles—
grains move seemingly randomly. Considerable effort hagfter a collision, the velocity difference between two
been devoted to the development of a continuum descriptioHamC'es is smaller than that. befpre the collision. This is a
for hydrodynamic equations—16]. local effect, .and the correlation is short _ranged. The other

Two approaches are employed by different authors. On&echanism is from _momentum conserva_tlon—the larger the
is to set up a Boltzmann equati¢h—5], and then to calcu- _scale of a perturbation produqng a localized average veloc-
late hydrodynamic quantities by doing averaging with theity, the slower the perturbation decay21]. Fluctuations
distribution function derived from the equation. In this case make the system nonuniform, so that there are localized clus-
the molecular chaos assumption of the Boltzmann equatiofgrs of particles all moving with about the same velocity.
proach is to specify some hydrodynamic quantities, and theA€glected in the usual hydrodynamic treatments. _
write down the conservation equations for thér16]. There are hydrodynamic theories ignoring fluctuations
Generally, there are three equations: conservation of mas¥hich are consistent with numerical results for weak inelas-
balance of energy, and conservation of momentum. ThéCities, but are quite inaccurate whgn inelasticities are
mass conservation is in the standard hydrodynamic formStrong, see, e.g., Ref22]. These theories are attempts to
The momentum flux balance equation is in the form Ofdescrlpe \_/elocny fluc_tuathns at_)out some mean f|OW. They
Navier-Stokes equation for fluid dynamics. The energyWOfk fine in th(aT qua5|elast|c regime bgcg_use correlations are
“conservation” equation includes dissipation of energy via Small and negligible. But when inelasticities are strong, col-
collisions. lisions can bring groups of neighboring particles to essen-

The failing of Liouville’s theorem for granular systems tially the same velocity, and thereby produce a correlated
[17] casts doubts on the applicability of conventional ap-motion which enhances the observable effect of any fluctua-
proaches to hydrodynamic equations. Instead of writingionS in the system. We shall see this happen in our study.
down such equations based on unjustified assumptions, The boundary conditions and system sizes independence
studying the dynamics with as few assumptions as possibl®f the essential characteristics of thermodynamic systems is
and trying to develop a theory closely connected to experi®n€ indication that thermodynamics is a universal descrip-
ments, may be a less ambitious, but more solid approach. tion. However, this independence is lost in granular systems.

One major consequence of the usual hydrodynamic thedVe show that a universal description may still exist for the
fies of fluids is the Maxwell-Boltzmann distribution. In the Unconserved modes of the dynamics.
frame in which the average system velocity is zero, this dis-
tribution implies no momentum correlations whatsoever Il. THIN PIPE MODEL
among different particles. This result is true for classical
elastic particles independently of the strength of the interpar-
ticle potential. In contrast, however, granular materials com- To investigate the validity of a hydrodynamic description,
monly induce correlated collective behaviors. Think aboutwe should study the simplest situation which can show hy-
the surface waves of vibrated safi8], or their convection drodynamic behavior. In the elastic case, one-dimensional
patterng 19] (for a recent review, see RdR0].) The grains systems have too many conservation laws and do not show a
which take part in these collective behaviors do have correfully ergodic or hydrodynamic behavi¢®,23]. Here, we in-

A. System
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B PRt T o SISt T R By using the particle numberas our coordinate, we take
t PR Sadioatd ,"1 advantage of the “no-passing” property of the thin pipe, and

thereby obtain a Lagrangian description of the system.

--® " "a " 9.%%%¢ ® 09 -0 - ) ) ) -
L‘-—-—‘ ----- N (G o U A 1 Let us denote the velocity of thigh particle asu;, the
o 00 relative velocity between théth and {+1)th particles as
[12276 0090 %% g840 %% %° A e vi=U;,1—U;, the velocity of the center of mass &s and
the velocity of theith particle with respect to the center of
[ e e 0eded® P ee%e o 9 | mass asl/=U;—U. Let us assume that the pipe is along the
x direction. Then thex component of the velocities is special,
l: TTTelTe g o 193‘_6_653_‘!_'_.‘_"._".52 --o- 1 and we denote the velocities asandv;. We use an over-

line notation to indicate the root mean squémas) value of
FIG. 1. Snapshots of the thin pipe system. The periodic sidéSOme quantities.
walls are indicated by dashed lines. The two end walls are energy We propose a method to calculate profiles of various
sources kept at the same temperature. Notice how most of the paguantities throughout the system and the velocity correla-
ticles fall into a cluster, which moves up and back through thetions. (A profile is a plot of the value of some averaged
system. quantity as a function of the particle number variablg

Instead of the strongly correlated velocitigs, we study the

vestigate a two-dimensional system in the form of a long thirrelative velocities of neighboring particless. In usingv
pipe (Fig. 1). The grains confined in the pipe are all identical, we focus our attention on the relative motion of the particles
and the width of the pipe is set so that two grains cannot pasand away from their collective and correlated motion.
each other. Thus the motion of grains is two dimensional to There are four parameters that will describe our system;
ensure ergodicity, while at the same time we can order thes@e particle numbeN, the pipe lengtiL, the widthW, and
grains. Pipe systems were studied bef@4]. However, the the inelasticitye. Of coursee measures the total amount of
no-passing condition enable this thin pipe model to simplifyinelasticity in one collision. In a system with many particles,
greatly both numerical and analytical calculatiof. two- the effect of the inelasticity is enhanced by the correlation
dimensional version of this model was studied by Brey anceffects. For this reason, we expect two combinationsNof
Cubero[4].) and e to be important. The produdtie measures the total
The two side walls are periodic—after leaving one sideamount of inelasticity in the system. For a one-dimensional
wall a particle comes back through the other. The distanc8ystem, imagine a particle with a large velocity hitting a
between the side walls is chosen to be 2.5 times the radius @oup of n particles, sitting almost at rest. The added mo-
a particle. This choice prevents any passing. Two end wall§entum will cascade down the group until at the end of the
are energy sources, and are kept at the same temperature!ine the transmitted momentum will be diminished by a fac-
For a thermodynamic system, the bulk properties shouldor exp(—ne). In addition, a previous calculation12]
not depend on the details of boundary conditions. Howevershowed that dissipation of energy led to a gradual decay of
for some granular properties, boundary conditions can béemperature in the form of an exponential-et+/en, where
quite important{2,19). We employ two different boundary c is a constant. Thus we expect a dip in temperature deter-
conditions in the numerical calculations: In both cases, whemined by the combination of parametafsN. Changing the
a particle hits an end wall the direction of its motion is remaining parameters and W will only modify some nu-
turned around, and the particle is returned to the system. Imerical factors in the theory—but will not change the quali-
the fixed speedboundary condition, the returned particles tative behavior of the system.
move away from the wall with a unit speed. Alternatively, in  The system shown in Fig. 1 contains both low density and
the Boltzmannboundary condition the returning speed is intermediate density regimes. There are some complication
picked from a distributionp(u)zzlje*uz [2]. All figures in such systems because of different geometrical factors for
describe simulations with the Boltzmann boundary condi-different density regime§12]. To avoid such complication
tions unless otherwise specified. and focus on the dynamics of the system, we carry out our
numerical calculations only for systems with extremely high
density, where the typical spacing between neighboring par-
) . ) ticles is about 2% of the radius of a particle; or for systems
We use the simplest model: nonrotating particles. After ayjth extremely low density, where the spacing at the highest
collision, the radial relative velocity changes sign, and degensity region of the system is about ten times the radius.

creases by a factor of the restitution coefficientwith  The essential characteristics of the dynamics are independent
0<r<1.Inthe collision, the other components of the veloci- of density regimes.

ties are unchanged. Thus=1 is for elastic particles, and
r=0 for extremely inelastic particles. We also defiere 1
—r.

The coordinate in the problem is an indéxwhich indi- This system can reach a statistical steady state. In this
cates the position of the particle. Suppose thereNare2n state, the particles move fast near the hot walls, and the den-
particles in the thin pipe. They are ordered as sity is low there. Toward the center of the system, the density

B. Parameters and variables

C. Steady state
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FIG. 2. Profiles of a low density system of 100 particles with  FIG. 3. Profiles of(v?/2) and(u?) for two different boundary

r=0.94, just above the critical value for inelastic collapse < is conditions. The system has low density 100 particles ran@.94.
for (u?), * for (v%/2), and+ for (uju;1). Each profile is rescaled by changing the scale of velocity so that
(v3/2)=1. There are two lines, which nearly overlap each other,

is higher. For quasielastic situations, the system is relativel§fescribing(v{/2). ¢ is Jfor (uf) with the Boltzmannboundary

uniform; however for stronger inelasticities, the particlescondition, and+ is for (ui) with afixed speedboundary condition.

near the center can form a cluster and move with about th&N€se two profiles are very different.

same velocity. The cluster was seen and understood in pre-

vious calculation$12,21]. The relative motion of particles is Equations(1) and(2) describe a situation in which heat con-

reduced by the inelastic collisions between them. In factduction balances against energy dissipation.

whenNe is large, the relative motion can be very small and  On the other hand, the large degree of correlation between

then momentum conservation causes each particle in the andu,, , is quite unexpected. No such correlation occurs

cluster to have about the same velocity, which is just thn the usual statistical mechanics. This kind of correlation

mean velocity of the cluster. o , _effect is not directly contained in any hydrodynamic equa-
Figure 2 shows a plot of some profiles in an inelastictions, As we shall see, it is a result of fluctuations not usually

situation with two hot walls. Notice that the profile @i%)  included in hydrodynamics.

has a flat region at the center. This was seen bg¢frérhat Boundary conditions are often important for granular sys-

flattening occurs because the central particles almost alwaygms. Figure 3 shows the effects of boundary conditions. We

fall within a cluster, and the cluster moves with a large aV-see(u?) depends sensitively on boundary conditions. In con-

erage velocity but small relative velocitigS he fluctuation trast, after a rescalindp?) is nearly independent of bound-

vi]lomuestﬁ]see be:o?/dvaryt.on at very sme;ll t|me—scaI(TI, ary conditions. There is no similar rescaling which can make
whereas the correlated moti¢dluster moves from one wall ¢ b sfiec for(u2) overlap.

to the othey varies on a much longer time scale. The aver-

ages are taken over even longer timieBhe plot of (v?)

indeed shows that the relative velocity decreases to a very D. Correlated motion and random motion

small value near the center of the system. This decdy i

is roughly what we might expect from a simple hydrody-

namic description, in which one balances energy flux with 2\ /120 12

dissipation[l%. The hydrodynamics then gives a%epen— (07 ={uit Ui = 2uiti ), ®

dence which is a superposition of growing and decaying ex-

ponentials. That theory is in some sense a mean field theory . . ] —,

which ignores the correlations between velocities. In muchvhen the correlatioqu;u;.. ;) is weak, we simply have;

of what we do, delicate and long range correlations effects= 2Ui2 (an overline notation is to indicate thens value of

will be very important for the behavior ai’s but less im- ~Some quantities assuming a weak dependence. But when

portant for thev’s. In fact we shall see that the rms of ~ correlation is strong, the relation betweehandu? is quite

obeys different. We shall study that difference in detail. From the
mechanism described above, we know that, near the center,

92 _ oo n UIZ is roughly constant, independentipfs a consequence of
—U0i=0"v;,

9i2 the motion of the cluster. ConverseEf will vary because

of energy dissipation. In our considerations, we shall focus
uponviz, which has an average which can be interpreted as a
local temperature. We argue thzft is a more relevant vari-
able thanu?, since, to a large extent, it determines the col-
lision rate, and the effect of a collision. In additiaﬁ, be-
vi=vocostbi). (2)  haves as predicted by the simple hydrodynamics theory, it

Since

whereb? is proportional toe for small values of the inelas-
ticity. The solution to the equation is
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FIG. 4. Time-average probability far; in a low density system FIG. 5. Probability distribution for relative velocities. The cal-

with N=100 andr =0.94. Five ,SUCh curves are §hown, fer0, culation is done as a time average for a low density system with
—10,—20,— 35, and—45. The first three in this list are close to N=100, r=0.94 andi=0,— 10— 20— 35, and—45. The PDF’s

Gauss!an,d?fnd they lie almost on top of one another. The other Wy v;'s collapse into a single curve after a rescaling. Once again the
are quite different. three curves for particles inside the cluster fall on top of one an-

. . . other, while the others are slightly different.
decays exponentially, and forms a hyperbolic cosine curve as

a function ofi. ConverselyE is produced by subtle corre- ver the system, the's behave in the same way, but this

lation effects. : . behavior is quite nontrivial. We will use the constancy of the
We can also write EQ(3) in the form PDF ofv; (in the whole systemandu; (in the interior of the
system to develop our theoretical model.
U+ ud, ) = HoD) + (Ut ). (4 System P

The term on the left hand side describes the total motion with !l MOTION IN THE CENTER OF MASS FRAME

rgspect to 'the lab frame, the seco_nd term on the r?ght hand Figure 3 suggests that we can decompose the dynamics of
side describes the correlated motion between partieled 4,4 system into two partsi) the motion of grains in the

particlei +1, and the first term on the right hand side de-center of mass frame, arftl) the motion of the center of
scribes the random relative motion between neighboring pars, 555 jtself. Part I is independent of boundary conditions and
ticles. Put into words, all the effects of boundary conditions are attributed to part Il.
(total motion =(random motioi-+(correlated motion Part | is described in terms of the varigblasmhich may be
considered to be weakly correlated with one another. Part Il
The first term on the right can be interpreted as a temperanvolves variablesu;, and strong correlations among the
ture; the second as a result of the correlated motion of th@ariables. In this section, we focus our attention upon the
two particles. In this way, we see that the ratio effects of conservation laws upon the system, and particu-

) ] larly on the motion of part I.
(v{) _ (random motiof

©)

T2 2 N '
(u?+u? )  (total motion A. Theoretical calculation

indicates the amount of correlation in the motion. When the ~ Since the number of degrees of freedom of part | is equal
inelasticity is weak, the velocity correlations are also weakto the number ob;’s, this part of motion can be described in
and this ratio is very close to unity. For strong inelasticity, terms ofv;’s. So the problem can be solved in two steps: the
where correlations are strong, this ratio can be very small. rms of l;i and the correlations betweeh’s. our interest in

the variablev; is also based on the numerical results shown

S _ , in Sec. Il that the profile ob; is, in accordance with hydro-
The probability distribution functiongPDF's) for uj and  dynamics theory and E@R), a hyperbolic cosine function of

v; provide considerable additional insight into the nature ofi 'pjus its weak dependence on the boundary conditions—

the system. See Figs. 4 and 5. In these figuresz the Variablrﬁ?ese suggest thﬁt can form the basis of a solution to some
are normalized to give each PDF the same variance. simple hydrodynamics equations

In the PDF plots fou; , we see a fundamentally Gaussian

E. PDF’s of velocities

behavior inside the cluster. Outside the cluster, the part of 1. Profile of o.
the curve shown is Gaussian but there is a strong high ve- o ' ' o
locity tail. Collisions For the steady state, mass conservation is re-

In contrast, the PDF plots far, show a structure which is duced to trivial statements thgti)=0 and(v;)=0. The
essentially the same inside and outside the cluster. Thus, attomentum and energy transfer between particles are results
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of collisions between them. So to investigate momentum ang@roaches the center of the system, the typical value of the
energy conservation, we study the effects of a single collimomentum transfer per collision declines in proportion to

sion first. _ o vi. Then, by Eq.(10), the collision rate increases by going
Let us consider a collision between thy and (+1)th  jnversely as the relative velocity.
particles, during whichu;, l]i+1, and Ji change to Using the same arguments, we can also understand the
u’, u,,, ando/, respectively. According to the inelastic Pressure definitioﬁEq.(lO)] in a familiar form. Pressure is a
collision rule, flow of momentum per unity area per unit time. One kind of
flow involves transfer of momentum from thth particle to
O =0+ 1+rﬁv. ©6) the next one. The collision rate is of the order wf/l;,
R B wherel; is the mean spacing between the two particles. Dur-

ing each collision, the average momentum transfer is propor-
= - 1+r. 7) tional to v;. From these two facts, the momentum flux is

Hiva =i ™ 50, proportional to ;izlli . The average of relative velocity
L . squared is the temperatufewhile 1/(WI;) is the densityp.
vi =vi—(1+r)nv;,, (8)  This result is then in the familiar forr®=pT. This identi-
R fication is an order of magnitude argument. For calculations,
wheren denotes a unit vector, pointing in the direction of the we use the exact resUlEq. (10)].
line of centers at the point of collision whitg ,, is the com- Energy balanceNow let us study the effects of this col-
ponent ofv; in that direction. lision on the energy balance. The energy transfers to particle

Pressure The collision described above results in ai and particlei+1 are, respectively,
change in the momentum of partidle- 1,

1+r 1-r?
T2 72_ 2 2 2
- . 1+r. Ui “—u; 7o (U 10— Ui n) — 2 Vin
! —
Uit~ Uit1= = —5 Min.
; ; ; >2 2 +r 2 1-r? 2
In a long time intervak, the momentum change of particle Ulf,—uf = —— (U, —u ) — ——0vip,
i+1 from collisions between particieand particlel + 1 is 2 4
P and the energy dissipation is
Pth=—TE (N-X)vi 1, 9) ,
I - - —r
[(uZ+uf, ) —(u/+u/?)]= Vin

where>()(...) is the summation over all the collisions be- 2

tween theth and § + 1)th particles. Thex component in Eq.

(9) is the direction along the pipe. We can form an energy conservation equation by balanc-
In writing Eq. (9), we identified the rate of momentum ing the energy dissipation with the difference of the energy

transfer from particlé to particlei+1 as an average pres- flux. However, the above expressions invoﬁ4e; which are

sure,P; times the pipe widthV, while t is the time for the correlated and do not belong to the motion in the center of

summation. We shall be dealing a lot with sums over colli-mass frame. To find a consistent description, we want to

sions as in (E:;?uatiomQ). To understand them, we should eypress this conservation in termsug. Because the essen-
realize that=™(.--)/t can be written as the rate of colli- tja| dynamic process is determined by the collision rule, Egs.
sions between andi+1, ¢;, times an average over colli- (g)—(8), an equation describing the balance of a quadratic

s?ons(_- )i of this type. Notice that the average over colli- ¢, of vi’s will incorporate the energy conservation.
sions is very different from the time-averade--). For In fact, we have, from Eq46)—(8)

example,(v;) must be zero in any steady state situation.

However, sincey; must be negative for a collision to occur, S0 22 o 2

then(v;); must be negative. vitmui=—(=r)vis,
Now go back to Eq(9). For the steady state, the momen-

tum flux must be a constant, so this summation over a long =0 cp (1+r)?
e i ; : v/ — v =140V Witint—V;
time interval must be independent iofThus the momentum 1Tl Ln¥i+dn 4 hn
conservation law has the consequence that the pressure, as
defined by Eq(9), is independent of. So the equation for 1+471)2

) =0 =2 (1+r)° ,
momentum conservation in our system takes the form viti—vi_=(1+ r)vi,nvi—l,n+TUi,n-

(i)
1+r ~ o~ 1+r ~ )
~ oW (NX)0in== S5 Cil(N-X)v 0)i=P. For the steady state, the total change fnshould vanish,
(10 M (i+1) (i-1)

>12_ 72 Tr2_ 2 T2 2y
The distribution functions for relative velocity depend only 2 0 =v)+ 2 @P-o))+ 2 (v*-v))=0,
weakly oni (Fig. 5). Thus all components and averages pf
vary in proportion to one another asis varied. Asi ap-  or, equivalently,
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(i+1)

(i)
—(1-1)> vl t+ X

(i-1

+ 2

2

1+r
VinVit+1nt 4 Uit1in

1+r ’

(Uiynvilyn‘l' Tvilyn)=0. (11)

The first term is from energy dissipation, while the other

terms take the form of energy transfer.

Profile ofv_i. We wish to simplify our energy-flow equa-

tion by reducing it to an equation f@évﬁn>i . However, cor-

TONG ZHOU
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€ . __ .
(6—4ay)7 - vi=viv1— 20+ vi-1.

In writing the last structure we noticed that different kinds of
collision averages all have the saindependence. Now we
can phrase our result in a continuum form

4 € __dzv_i
(6— al)mvi—ﬁ.

In this way, we obtain

relations betweem; andv;,, appear in Eq(11). We must

eliminate these terms. For an elastic uniform system, this vi=vocostbi), (15)
correlation takes a simple form
where
<UiUi+l>:<(ui+21_ui)(ui+2_ui+1)> b2=(3—2a,)e. (16
=—(Ui; )
— 2. Correlations between velocities
=—320iVi+1- (12)

Correlations between;’s are short ranged. Let us only
In the elastic case, it is equally true, for the usual time-Consider the nearest neighbor correlation. When there is no
weighted average or for the collision weighted average, thaflissipation, the only nonvanishing correlation of #ié&s is
the nearest neighbor average of EfR). Forr<1, there is a
small correction to that relation. Just as befigee Eq(14)],
we write an equation for the average of a nearest neighbor
product in the same form as in the elastic case, but with a

(i+1) (i-1)

> Wiisin)+ X2 (Vivio1n)

=—3(nS, whs,+n v ), (13)  correction proportional te,
— l-a,e——
wherev{=\="y? /nf, andnf is the total number of colli- (Vivi+1)=— TZUiUH—L 17)

sions between particleand particlei + 1, nf=c;t. As de-
fined herep{ is a collision average ofi just before colli-  where the averages are time averages.

sions. _ _ This assumption, with the profile of, determined above,
Equation(13) has scalars on the left and right hand sidescompletes a description of the motion of grains in the center
There are corrections to this relation for inelastic particlesof mass of frame, i.e., part | of the dynamics described be-
and when there is a spatial variation in the averages. Theyre, As an example, let us calculate the correlations between
corrections must be scalars and of oraér One correction  uj’s, the velocities of particles in the center of mass frame.
is of the order ofeaz. In the other correctiond?/di2 is  To illustrate the similarity between this part of the dynamics
applied to;iz. However, in virtue of the result in Eq), and %onventmdan therm(;ndynammg, i.e., the mdgdpengence of
these two terms are really the same. Consequently, we ne undary conditions and system sizes, we consider the center

only one of these two corrections. We write the resultingﬁ mass frqm(;ec;:‘themhpart;]clesfgt t&e centt()ar of the Zystem.
structure, in an even parity form, as eep in mind that rather than fixeda can be treated as a

variable in the following calculation.

(i+1) (i-1) Expressu; in terms ofv;’s,

2 (Ui,nUi+l,n)+ E (Ui,nvi—l,n)

i—-1

m—1
]2 (m—jvj— >

1
u=—— m+j)vi|.
1_a16 c c.c c c..c 2m ]:,(m,l)( J) )
=TT (N{L 10V TN 07— g). (14
So
Now Eq. (14) can be used to transform E(.1) into the
form %04 4 2uful, , :A—mzviz
- u2+ul, .2 A+mZ?’
—enfui?+ T(”ic+ Wi 2 vi %) where
l—ase m-1 i-1 2
1 . . .
— 5 (Mywivi F i gvivf ) =0, A=| 2 (m=Duj= 2 (M fo—iv,

or, sincen{v{ is a constant independent bfsee Eq.(10)],
we find a heat flow equation

Let us calculate the correlation betwegpandu; . Keeping
only the correlations between nearest neighbor, we have
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-1

m—1
<{]21 <m—j>v,~—j > )<m+j>vj

2 m—1 m—2
> =2< 121 (m—j)20j2+2j21 (m=j)(m=j—1)vjvj.q

m—2
=(m-1)%2+0v%_+ JZl [(m=j)o;—(Mm—j—1)v;,4]?

m-—2

"’232621 (m=))(M=j—=1)vvj+q

—
Al 0

S0 A test of Eq.(15) is shown in Fig. 7. Analysis like this
permits the determination of the slope like the one in Fig. 7
(2ugu A,—m? as a function ofe. We have called this slopk. Figure 8
U2+ ut?) :A e (18 shows that the numerical values give adependence fdp
071 1 which fully supports the theory. However, notice that all this
analysis applies to very small values ef Section IlI B2
considers more inelastic situations.

Obviously, whenm=1, the above ratio is-1, because
ug=—uj at all time. For elastic particles, the ratio can be
calculated analytically to be-1/(2m—1). The inelasticity _ o _
changes this dependence. Let us cati the “cluster size,” 2. Stronger inelasticity regime
since it corresponds to the usual practice of defining a cluster We look at smaller’s. To avoid inelastic collapses, we

then separating the motion of particles into mean flow andimit our r to be greater than,. For a system of 100 par-
fluctuations. From expressiofi8), we see that when the ticles with extremely high density,.~0.95.

cluster is large enough; can be large comparing tm?; Whenr becomes smaller, there is a cluster of particles
then the correlations between velocity fluctuations can benoving around the center of the pipe, all with about the same
large. velocity. The system is in a state far away from equilibrium.
Also, it is very nonuniform—the particles around the center
B. Numerical results are highly correlated, while those near the boundaries move

independently; the energy flux is strong near the end walls,
but rather weak inside the system. As a consequence, the
YDF's of guantities change significantly from particles near
"he center to those near the boundaries, e.g., the PDF’s of
u;'s, though there is no large change in the PDF's) ¢$.

Figure 9 once again plots a quantity which should be lin-
ear ini if the theory, Eqs(15), is right. Now, for this larger
First let us look at the quasielastic situations, i.e., veryvalue ofe, there are substantial variations in slope. It appears

small e. Before testing the profile af;’s, we exam the cru-  that the theory does not apply for the 15 particles nearest to
cial assumption, Eq.14).

We carry out numerical simulations to investigate the sta

merical results with the above theory describing the motio
in the center of mass frame.

1. Quasielastic situations

Now let us look more sharply at the data. To fiad, we 0.40 — — . —
do a very accurate determination of the ratio of averages " .7
from the left and the right hand sides of Ed4). This equa- E
tion is then solved at eadhvalue to find a local value dd; . 0.30F 3

The result is shown in Fig. 6. The theory is rightaf is
independent of, and wrong if it has an importantdepen- g ]
dence. The figure seems to show that there is an excellent fit I o ook M=
for the smaller value o&, and a bad fit for the larger. 3

From Eg.(16) we see that the important combination de-

termining the properties of the profile ofis 3—2a,. Buta,
is very close to 1.5, as shown in Fig. 6. Then theeffect
changes the prefactor in E(L6) from 3 to 3—2a,, i.e., by
a factor of 50. The velocity correlations renormalizeand
reduce the energy dissipation.

Also a; is essentially a local correlation effect originated
from the inelastic collisions. For an elastic system with com-  F|G. 6. Numerical results for 1:5a, for a high density system
parable inhomogeneity, there is also a correction to the factagith 100 particles averaged ovex2 @ collisions.a, is defined in
—3 in Eqg. (14), but the correction is usually an order of Eq.(14). ¢ is for r=0.995; + is for r=0.95. The line is for 1.5
magnitude smaller than the effects we are seeing here.  —a;=0.029 from the fit in Fig. 8.

a4

1.5

particle i
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_ FIG. 9. Fit to a hyperbolic cosine curve of the profile@ﬁor a

FIG. 7. Fit to a hyperbolic cosine curve of the profile of the  high density system of 100 particles andg 0.95. This is a higher-
for a high density system of 100 particles and0.9995. To check ¢ analog of Fig. 7. The straight line corresponds to a hyperbolic
Eq. (15), we take the inverse of the hyperbolic cosinepfv, and  cosine profile curve, and its slope is 0.054, a value extrapolated
plot the result as a function af The straight line indicates a fit to from the expression for quasielastic cagegy. 8). However, the
the theory. In the theory, the slope is proportional to the square rogagtraight-line fit is not very good, especially near the boundary.
of €. Here the slope is 0.0055, which is equal to the square root of
0.0€e. this correlation with respect to different cluster sizes, i.e.,

different m, with Eq. (18), and with the profile ob; calcu-

each of the boundaries, and that it might have small troublemited numerically. The comparison between theory and nu-
elsewhere. This discrepancy is also shown when we plot thgerical result is shown in Fig. 11. We see the correlation
slope, calculated from doing numerical derivatives on Fig. 9ncreases with increasing cluster size. The comparison is the
to give b as a function of. This plot is given as Fig. 10.  best fora,=0.6. When the cluster size is large enough, most

The discrepancy between the theory and numerical resuligf the total motion belongs to the correlated motion. We
for strong inelasticity is not surprising. Though taking into want to point out that this curve is independent of boundary
account the correlations between fluctuations, the theory igonditions. Also for systems with different sizes, we obtain
still based on concepts of conventional fluids—no internalsections of different length from this same curve, as shown
structures are considered. However, when inelasticity isn the figure.
strong, the dynamics is affected by intrinsic structures of the We want to point out that the major point of Fig. 11 is to
collection of the particles, and the whole system may belongiemonstrate that part of the dynamics, the motion in the
to a different phasgl7]. A satisfactory theory must incorpo- center of mass frame, is independent of boundary conditions
rate this feature. and system sizes. The agreement between theory and nu-

Now let us look at the velocity correlations. Only the merical results can not be viewed as a strong support for the
nearest neighbor correlatidieq. (17)] is considered. The el of the theory because the profilespfs from numeri-
theory leads to expressi@h8) of the correlation betweeuy, cal calculations, rather than El5); also, the valuea,
and u}, which is independent of system sizes or boundary
conditions. To test this expression, we numerically calculate

0.40 E T T TTT T T T
0.020 IARARARS T T T g
I 0.30F * 3
0.015 F
I _ F
= 0.20F *
—~—~ r o)
= 0.010 *
B *
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€
FIG. 10. The position dependence of the prefattan a high
FIG. 8. Thee dependence db for systems withN=100. The  density system with 100 particles and=0.95. The line isb
curve is the theoretical fit, the square root of 0.658ee Eq(15).] =0.054, extrapolated from the quasielastic cases.
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for the velocity of the outermost particle is more skewed for
higher values ofe, and so the ratio between* and the
momentum transferred into the system from the wall de-
pends one. Notice that the motion of the center of mass
depends strongly on the boundary condition.

Suppose the motion of particles in the center of mass
frame is independent of the motion of the center of mass
itself, i.e.,u is uncorrelated t@;’s; then

0.5

0.0

correlation

—0.5:
(uf)=(ui%)+(u?).

_1.0 L 1. 1 1 1 L
0 20 40 60 80 100
size of the cluster

Simulations show that the profile of is nearly independent

of boundary conditions, and so is the motion of the system in
FIG. 11. The cluster size dependence of r&fi6). The system the center of mass frame. Howevén?) depends sensitively

is in a low density regime, with=0.94. * is from time average on the boundary conditions, and so does the motion of the

results of a simulation with 100 particles add is from a simula-  particles in the lab frame, i.e., the profile <le2> (Fig. 3.

tion with 60 particles. The curve is from E(L8) with a,=0.6. Due to the motion of the center of mass, correlations be-

) o tweenu;'s are enhanced, comparing to those betwegs:
=0.6 is a fitting parameter. The theory captures some quali-

tative features of the dynamics, but is still incomplete.
(2uiti 1) 2(ujuf,g)+2(u?)
IV. MOTION OF THE CENTER OF MASS (U3 U2 ) (ul2+ul, 2 +2(u?)

Because the total momentum of the system can be only
changed by collisions between the outermost particles angr
the walls, and the motion of the outermost particles is close
to that of an elastic system, the motion of the center of mass
should also be close to that of an elastic system. For an v? v?

elastic system, (WA ,)  (u+ul, 2 +2(u?)

R. (20

2
2\ _ — 2
(u >_<(§i: “i/N) >_“* IN, (19 The ratioR, between random motion and total motion was
defined by us in Eq(5).

whereu* is the rms speed of the outermost particle. From
Fig. 12 we see this estimate is about right, though the nu- Behavior of the ratio R,
merical factor must be calculated from detailed distributions.

The result also seems sensitiveetoThis is because the PDF Whenne is small, we can expand expressi@0), using

Egs.(15), (18), and(19). Keeping terms linear ie, we have

2,57 ' ' T ' ] €
i o —In(Ro)= 5{[(N—a)*+(n-1)](3—2ay)
20F X ]
* +2(n—1)(n—2)a,/3}, (21
*
*i 1.5F * .
D r X 1 where 0< a<<1. From Eq.(21) we see that whene is small,
g 10k, * ] —In(Ry) is_ proportional tone. o
[ ] Numerical results of-In(R,) are shown in Fig. 13. We do
i ] see that-In(Ry) is proportional toe for very smalle. How-
0Sp e . o o o o o o 4 ever, whene is large, where we expect strong nonlinear ef-
L ] fects, it is proportional ta:?.
OO ! ] As we argued in Sec. Il, there are two important combi-
0.000  0.010 0020  0.030  0.040  0.050 nations ofN and e. The productN /e describes how tem-

¢ perature decays toward the center of the system, which

FIG. 12. Test of Eq(19) for two boundary conditions for high 2grees excellently with the numerical results wheis very
density systems wittN=100. The ratios are all around 1, as we SMall. However, Eq(21) shows that in this limit, only the
expect from our order of magnitude argument. The * is for theProduct Ne appears in the final expression f&;. This
Boltzmann boundary condition, and the is for the fixed speed S€ems to suggest thap, i.e., the degree of the coherence of
condition. The motion of the center of mass depends strongly on théhe particles’ motion, is determined by the prodiet (Figs.
boundary conditions. 14 and 15%. These two figures exhibit rather interesting fea-
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FIG. 13. The logarithm of ratig5) for i=0 vse. + is for N

N=100, *isforN=70, and$ is for N=40. All three are for low ) ) . .
density systems with the Boltzmann boundary condition. The FIG. 15. The functiorf(N) from Fig. 14.f(N) is proportional
dashed line indicates a dependenc&Rjjite, and the dotted line @ N with a small adjustment due to boundary effects.

indicates a dependence é. . . .
P o< Characteristicly for granular systems, fluctuations are im-

tures of the dynamicg25], though we do not have a satis- Portant at all scales, enhanced by the combined effects of
factory understanding of them. momentum conservation and nonuniformity. Also, the sepa-
ration between fluctuations and mean flow is quite nontrivial.
The mean motioricorrelated and the fluctuations relative to
it have to be separated strictly speaking at every instant of
In this paper, we investigated the steady state of a forceime and at any position. Ideally, the fluctuations should be
granular system in a thin pipe. Correlations between velociuncorrelated. But if the mean flow is an average of a collec-
ties of granular particles are shown to be important for dion of particles, the correlations between the fluctuations
correct understanding of such systems. For systems in théepend on the size of the collection.
quasielastic regime, correlation is small, but not negligible An important issue is the existence of a universal descrip-
because the deviation from equilibrium is also sméllor-  tion, which is not common for nonequilibrium systems. The
relation is usually ignored in this regime, see, for exampleseparation of the dynamics into motion in the center of mass
Ref.[6]. We have shown here that it cannot be ignored in &rame and the motion of the center of mass itself is quite
self-consistent theoryFor systems with stronger inelastic- suggestive.
ity, correlation is crucial for a correct theory. Our theory =~ The motion of the center of mass cannot be universal.
describes the dynamics satisfactorily in the quasielastic limitMomentum conservation decides that the velocity of the cen-
For stronger inelasticities, numerical results show quite inter of mass can be changed only by interaction between par-
teresting behaviors of the system; however, our theoreticdicles and external effects. So it depends sensitively on the

V. CONCLUSION

understanding is only qualitative at this stage.

10‘0005 T T M+ E
- f& 1
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E o.1oo§ e g
#**W
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L < ]
0.010E 3
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0.001 . \
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ef(N)

details of boundary conditions, as shown in this paper, and
cannot be universal.

This is true for both elastic systems and inelastic ones.
However, in elastic systems, every mode has the same
strength due to the equipartition law of the energy. The mo-
tion of the center of mass is just one mode ouNaf modes,
and its effect is negligible for a macroscopic system. In a
dissipative system, on the other hand, being the only con-
served mode, it can dominate over all other modes. Conse-
quently, a universal description does not exist for the dynam-
ics as a whole.

Still, if we look at the otheN—1 modes which are per-
pendicular to this nonuniversal mode, we may discover some
universal features. The independence of the motion in the
center of mass frame on the boundary conditions and system
sizes is a hint that this part of the dynamics may be universal.
Further study is being carried out.

FIG. 14. The curves shown in Fig. 13 can be shifted to overlap  The thin pipe model used here greatly simplifies both the

by changing thec axis frome to ef(N), wheref(N) is a function
of the total number of particles in the systefif100)=1. Three

numerical and analytical calculations. The low density ver-
sion of it may not have higher-dimensional analogies, where

curves are shown, they are all for low density systems with Boltzthe sequence of particles is necessarily broken. However, the

mann boundary conditionst: is for N=100, * is forN=70, and

& is for N=40.

high density version can be modified for a higher-
dimensional situation, where the sequence can be kept.
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