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Velocity correlations in granular materials

Tong Zhou
The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 10 June 1998!

A system of inelastic hard disks in a thin pipe capped by hot walls is studied with the aim of investigating
velocity correlations between particles. Two effects lead to such correlations: inelastic collisions help to build
localized correlations, while momentum conservation and diffusion produce long ranged correlations. In the
quasielastic limit, the velocity correlation is weak, but it is still important since it is of the same order as the
deviation from uniformity. For systems with stronger inelasticity, the pipe contains a clump of particles in
highly correlated motion. A theory with empirical parameters is developed. This theory is composed of
equations similar to the usual hydrodynamic laws of conservation of particles, energy, and momentum. Nu-
merical results show that the theory describes the dynamics satisfactorily in the quasielastic limit, though only
qualitatively for stronger inelasticity.@S1063-651X~98!06512-X#

PACS number~s!: 81.05.Rm, 05.20.Dd, 47.50.1d
r o
gy
i

th
ha
tio

n

he
se
tio
r a
he

a
Th
rm
o
g
ia

s
p
in
on
ib
er
h.
e
e
is
e

ca
a
m
u

rre

ese

la-
ha-
ha-
—
o
a

her
the
loc-

lus-
ty.
re

ns
as-
re

to
ey
are
ol-
en-
ted
ua-
y.
nce
s is
rip-
ms.
he

n,
hy-
nal
w a
I. INTRODUCTION

A granular system normally consists of a large numbe
particles colliding with one another and losing a little ener
in each collision. If such a system is shaken to keep it
motion, its dynamics resembles that of fluids, in that
grains move seemingly randomly. Considerable effort
been devoted to the development of a continuum descrip
for hydrodynamic equations@1–16#.

Two approaches are employed by different authors. O
is to set up a Boltzmann equation@1–5#, and then to calcu-
late hydrodynamic quantities by doing averaging with t
distribution function derived from the equation. In this ca
the molecular chaos assumption of the Boltzmann equa
assumes zero correlations between particles. The othe
proach is to specify some hydrodynamic quantities, and t
write down the conservation equations for them@6–16#.
Generally, there are three equations: conservation of m
balance of energy, and conservation of momentum.
mass conservation is in the standard hydrodynamic fo
The momentum flux balance equation is in the form
Navier-Stokes equation for fluid dynamics. The ener
‘‘conservation’’ equation includes dissipation of energy v
collisions.

The failing of Liouville’s theorem for granular system
@17# casts doubts on the applicability of conventional a
proaches to hydrodynamic equations. Instead of writ
down such equations based on unjustified assumpti
studying the dynamics with as few assumptions as poss
and trying to develop a theory closely connected to exp
ments, may be a less ambitious, but more solid approac

One major consequence of the usual hydrodynamic th
ries of fluids is the Maxwell-Boltzmann distribution. In th
frame in which the average system velocity is zero, this d
tribution implies no momentum correlations whatsoev
among different particles. This result is true for classi
elastic particles independently of the strength of the interp
ticle potential. In contrast, however, granular materials co
monly induce correlated collective behaviors. Think abo
the surface waves of vibrated sand@18#, or their convection
patterns@19# ~for a recent review, see Ref.@20#.! The grains
which take part in these collective behaviors do have co
PRE 581063-651X/98/58~6!/7587~11!/$15.00
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lated velocities. We therefore ask: how important are th
correlations and how are they built up?

In this paper, we investigate the building up of corre
tions between velocities of grains. There are two mec
nisms upon which correlations can be built up. One mec
nism is due to the inelastic collisions between particles
after a collision, the velocity difference between tw
particles is smaller than that before the collision. This is
local effect, and the correlation is short ranged. The ot
mechanism is from momentum conservation—the larger
scale of a perturbation producing a localized average ve
ity, the slower the perturbation decays@21#. Fluctuations
make the system nonuniform, so that there are localized c
ters of particles all moving with about the same veloci
This correlation effect is a result of fluctuations which a
neglected in the usual hydrodynamic treatments.

There are hydrodynamic theories ignoring fluctuatio
which are consistent with numerical results for weak inel
ticities, but are quite inaccurate when inelasticities a
strong, see, e.g., Ref.@22#. These theories are attempts
describe velocity fluctuations about some mean flow. Th
work fine in the quasielastic regime because correlations
small and negligible. But when inelasticities are strong, c
lisions can bring groups of neighboring particles to ess
tially the same velocity, and thereby produce a correla
motion which enhances the observable effect of any fluct
tions in the system. We shall see this happen in our stud

The boundary conditions and system sizes independe
of the essential characteristics of thermodynamic system
one indication that thermodynamics is a universal desc
tion. However, this independence is lost in granular syste
We show that a universal description may still exist for t
unconserved modes of the dynamics.

II. THIN PIPE MODEL

A. System

To investigate the validity of a hydrodynamic descriptio
we should study the simplest situation which can show
drodynamic behavior. In the elastic case, one-dimensio
systems have too many conservation laws and do not sho
fully ergodic or hydrodynamic behavior@2,23#. Here, we in-
7587 © 1998 The American Physical Society
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7588 PRE 58TONG ZHOU
vestigate a two-dimensional system in the form of a long t
pipe~Fig. 1!. The grains confined in the pipe are all identic
and the width of the pipe is set so that two grains cannot p
each other. Thus the motion of grains is two dimensiona
ensure ergodicity, while at the same time we can order th
grains. Pipe systems were studied before@24#. However, the
no-passing condition enable this thin pipe model to simp
greatly both numerical and analytical calculations.~A two-
dimensional version of this model was studied by Brey a
Cubero@4#.!

The two side walls are periodic—after leaving one s
wall a particle comes back through the other. The dista
between the side walls is chosen to be 2.5 times the radiu
a particle. This choice prevents any passing. Two end w
are energy sources, and are kept at the same temperatu

For a thermodynamic system, the bulk properties sho
not depend on the details of boundary conditions. Howe
for some granular properties, boundary conditions can
quite important@2,19#. We employ two different boundary
conditions in the numerical calculations: In both cases, w
a particle hits an end wall the direction of its motion
turned around, and the particle is returned to the system
the fixed speedboundary condition, the returned particle
move away from the wall with a unit speed. Alternatively,
the Boltzmannboundary condition the returning speed
picked from a distributionP(u)52ue2u2

@2#. All figures
describe simulations with the Boltzmann boundary con
tions unless otherwise specified.

B. Parameters and variables

We use the simplest model: nonrotating particles. Afte
collision, the radial relative velocity changes sign, and
creases by a factor of the restitution coefficientr, with
0,r ,1. In the collision, the other components of the velo
ties are unchanged. Thusr 51 is for elastic particles, and
r 50 for extremely inelastic particles. We also definee[1
2r .

The coordinate in the problem is an index,i, which indi-
cates the position of the particle. Suppose there areN52n
particles in the thin pipe. They are ordered as

FIG. 1. Snapshots of the thin pipe system. The periodic s
walls are indicated by dashed lines. The two end walls are en
sources kept at the same temperature. Notice how most of the
ticles fall into a cluster, which moves up and back through
system.
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2n,2~n21!, . . . ,21,0,1, . . . ,~n21!.

By using the particle numberi as our coordinate, we tak
advantage of the ‘‘no-passing’’ property of the thin pipe, a
thereby obtain a Lagrangian description of the system.

Let us denote the velocity of thei th particle asuW i , the
relative velocity between thei th and (i 11)th particles as

vW i[uW i 112uW i , the velocity of the center of mass asuW , and
the velocity of thei th particle with respect to the center o
mass asuW i

r[uW i2uW . Let us assume that the pipe is along t
x direction. Then thex component of the velocities is specia
and we denote the velocities asui andv i . We use an over-
line notation to indicate the root mean square~rms! value of
some quantities.

We propose a method to calculate profiles of vario
quantities throughout the system and the velocity corre
tions. ~A profile is a plot of the value of some average
quantity as a function of the particle number variablei .)
Instead of the strongly correlated velocitiesuW ’s, we study the
relative velocities of neighboring particles,vW ’s. In using vW
we focus our attention on the relative motion of the partic
and away from their collective and correlated motion.

There are four parameters that will describe our syste
the particle numberN, the pipe lengthL, the widthW, and
the inelasticitye. Of coursee measures the total amount o
inelasticity in one collision. In a system with many particle
the effect of the inelasticity is enhanced by the correlat
effects. For this reason, we expect two combinations oN
and e to be important. The productNe measures the tota
amount of inelasticity in the system. For a one-dimensio
system, imagine a particle with a large velocity hitting
group of n particles, sitting almost at rest. The added m
mentum will cascade down the group until at the end of
line the transmitted momentum will be diminished by a fa
tor exp(2ne). In addition, a previous calculation@12#
showed that dissipation of energy led to a gradual decay
temperature in the form of an exponential of2cAen, where
c is a constant. Thus we expect a dip in temperature de
mined by the combination of parametersAeN. Changing the
remaining parametersL and W will only modify some nu-
merical factors in the theory—but will not change the qua
tative behavior of the system.

The system shown in Fig. 1 contains both low density a
intermediate density regimes. There are some complica
in such systems because of different geometrical factors
different density regimes@12#. To avoid such complication
and focus on the dynamics of the system, we carry out
numerical calculations only for systems with extremely hi
density, where the typical spacing between neighboring p
ticles is about 2% of the radius of a particle; or for syste
with extremely low density, where the spacing at the high
density region of the system is about ten times the rad
The essential characteristics of the dynamics are indepen
of density regimes.

C. Steady state

This system can reach a statistical steady state. In
state, the particles move fast near the hot walls, and the
sity is low there. Toward the center of the system, the den

e
gy
ar-
e



e
es
th
p

c
nd
t

th

tic

a
v

,
l
er

ve

y-
it

ex
eo
c
c

-

-

een
rs

on
a-
lly

ys-
We
n-
-
ke

he
nter,
f

us
s a

ol-

, it

ith

that
er,

PRE 58 7589VELOCITY CORRELATIONS IN GRANULAR MATERIALS
is higher. For quasielastic situations, the system is relativ
uniform; however for stronger inelasticities, the particl
near the center can form a cluster and move with about
same velocity. The cluster was seen and understood in
vious calculations@12,21#. The relative motion of particles is
reduced by the inelastic collisions between them. In fa
whenNe is large, the relative motion can be very small a
then momentum conservation causes each particle in
cluster to have about the same velocity, which is just
mean velocity of the cluster.

Figure 2 shows a plot of some profiles in an inelas
situation with two hot walls. Notice that the profile of^ui

2&
has a flat region at the center. This was seen before@4#. That
flattening occurs because the central particles almost alw
fall within a cluster, and the cluster moves with a large a
erage velocity but small relative velocities.@The fluctuation
velocities ~see below! vary on a very small time-scale
whereas the correlated motion~cluster moves from one wal
to the other! varies on a much longer time scale. The av
ages are taken over even longer times.# The plot of ^v i

2&
indeed shows that the relative velocity decreases to a
small value near the center of the system. This decay in^v i

2&
is roughly what we might expect from a simple hydrod
namic description, in which one balances energy flux w
dissipation@12#. The hydrodynamics then gives ani depen-
dence which is a superposition of growing and decaying
ponentials. That theory is in some sense a mean field th
which ignores the correlations between velocities. In mu
of what we do, delicate and long range correlations effe
will be very important for the behavior ofuW ’s but less im-
portant for thevW ’s. In fact we shall see that the rms ofv i
obeys

]2

] i 2
v̄ i5b2v̄ i , ~1!

whereb2 is proportional toe for small values of the inelas
ticity. The solution to the equation is

v̄ i5 v̄0cosh~bi !. ~2!

FIG. 2. Profiles of a low density system of 100 particles w
r 50.94, just above the critical value for inelastic collapser c . L is
for ^ui

2&, * for ^v i
2/2&, and1 for ^uiui 11&.
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Equations~1! and~2! describe a situation in which heat con
duction balances against energy dissipation.

On the other hand, the large degree of correlation betw
ui andui 11 is quite unexpected. No such correlation occu
in the usual statistical mechanics. This kind of correlati
effect is not directly contained in any hydrodynamic equ
tions. As we shall see, it is a result of fluctuations not usua
included in hydrodynamics.

Boundary conditions are often important for granular s
tems. Figure 3 shows the effects of boundary conditions.
see^ui

2& depends sensitively on boundary conditions. In co
trast, after a rescaling,^v i

2& is nearly independent of bound
ary conditions. There is no similar rescaling which can ma
the profiles for̂ ui

2& overlap.

D. Correlated motion and random motion

Since

^v i
2&5^ui

21ui 11
2 &22^uiui 11&, ~3!

when the correlation̂uiui 11& is weak, we simply havev̄ i
2

52ūi
2 ~an overline notation is to indicate therms value of

some quantities!, assuming a weaki dependence. But when
correlation is strong, the relation betweenv̄ i

2 and ūi
2 is quite

different. We shall study that difference in detail. From t
mechanism described above, we know that, near the ce
ūi

2 is roughly constant, independent ofi, as a consequence o

the motion of the cluster. Conversely,v̄ i
2 will vary because

of energy dissipation. In our considerations, we shall foc
uponv i

2 , which has an average which can be interpreted a
local temperature. We argue thatv i

2 is a more relevant vari-
able thanui

2 , since, to a large extent, it determines the c

lision rate, and the effect of a collision. In addition,v̄ i be-
haves as predicted by the simple hydrodynamics theory

FIG. 3. Profiles of̂ v i
2/2& and ^ui

2& for two different boundary
conditions. The system has low density 100 particles andr 50.94.
Each profile is rescaled by changing the scale of velocity so
^v0

2/2&51. There are two lines, which nearly overlap each oth
describing^v i

2/2&. L is for ^ui
2& with the Boltzmannboundary

condition, and1 is for ^ui
2& with a fixed speedboundary condition.

These two profiles are very different.
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decays exponentially, and forms a hyperbolic cosine curv
a function of i. Conversely,ūi is produced by subtle corre
lation effects.

We can also write Eq.~3! in the form

1
2 ^ui

21ui 11
2 &5 1

2 ^v i
2&1^uiui 11&. ~4!

The term on the left hand side describes the total motion w
respect to the lab frame, the second term on the right h
side describes the correlated motion between particlei and
particle i 11, and the first term on the right hand side d
scribes the random relative motion between neighboring
ticles. Put into words,

~ total motion!5~random motion!1~correlated motion!.

The first term on the right can be interpreted as a temp
ture; the second as a result of the correlated motion of
two particles. In this way, we see that the ratio

Ri5
^v i

2&

^ui
21ui 11

2 &
5

~random motion!

~ total motion!
~5!

indicates the amount of correlation in the motion. When
inelasticity is weak, the velocity correlations are also we
and this ratio is very close to unity. For strong inelastici
where correlations are strong, this ratio can be very sma

E. PDF’s of velocities

The probability distribution functions~PDF’s! for ui and
v i provide considerable additional insight into the nature
the system. See Figs. 4 and 5. In these figures, the varia
are normalized to give each PDF the same variance.

In the PDF plots forui , we see a fundamentally Gaussia
behavior inside the cluster. Outside the cluster, the par
the curve shown is Gaussian but there is a strong high
locity tail.

In contrast, the PDF plots forv i show a structure which is
essentially the same inside and outside the cluster. Thus

FIG. 4. Time-average probability forui in a low density system
with N5100 andr 50.94. Five such curves are shown, fori 50,
210,220,235, and245. The first three in this list are close t
Gaussian, and they lie almost on top of one another. The other
are quite different.
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over the system, thev8s behave in the same way, but th
behavior is quite nontrivial. We will use the constancy of t
PDF ofv i ~in the whole system! andui ~in the interior of the
system! to develop our theoretical model.

III. MOTION IN THE CENTER OF MASS FRAME

Figure 3 suggests that we can decompose the dynamic
the system into two parts:~I! the motion of grains in the
center of mass frame, and~II ! the motion of the center o
mass itself. Part I is independent of boundary conditions
all the effects of boundary conditions are attributed to part
Part I is described in terms of the variablesvW i which may be
considered to be weakly correlated with one another. Pa
involves variablesuW i , and strong correlations among th
variables. In this section, we focus our attention upon
effects of conservation laws upon the system, and part
larly on the motion of part I.

A. Theoretical calculation

Since the number of degrees of freedom of part I is eq
to the number ofvW i ’s, this part of motion can be described
terms ofvW i ’s. So the problem can be solved in two steps: t
rms of vW i and the correlations betweenvW i ’s. Our interest in
the variablevW i is also based on the numerical results sho
in Sec. II that the profile ofv̄ i is, in accordance with hydro
dynamics theory and Eq.~2!, a hyperbolic cosine function o
i, plus its weak dependence on the boundary condition
these suggest thatvW i can form the basis of a solution to som
simple hydrodynamics equations.

1. Profile of v̄ i

Collisions. For the steady state, mass conservation is
duced to trivial statements that^uW i&50 and ^vW i&50. The
momentum and energy transfer between particles are re

o

FIG. 5. Probability distribution for relative velocities. The ca
culation is done as a time average for a low density system w
N5100, r 50.94 andi 50,210,220,235, and245. The PDF’s
for v i ’s collapse into a single curve after a rescaling. Once again
three curves for particles inside the cluster fall on top of one
other, while the others are slightly different.
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PRE 58 7591VELOCITY CORRELATIONS IN GRANULAR MATERIALS
of collisions between them. So to investigate momentum
energy conservation, we study the effects of a single co
sion first.

Let us consider a collision between thei th and (i 11)th
particles, during which uW i , uW i 11 , and vW i change to
uW i8 , uW i 118 , and vW i8, respectively. According to the inelast
collision rule,

uW i85uW i1
11r

2
n̂v i ,n , ~6!

uW i 118 5uW i 112
11r

2
n̂v i ,n , ~7!

vW i85vW i2~11r !n̂v i ,n , ~8!

wheren̂ denotes a unit vector, pointing in the direction of t
line of centers at the point of collision whilev i ,n is the com-
ponent ofvW i in that direction.

Pressure. The collision described above results in
change in the momentum of particlei 11,

uW i 118 2uW i 1152
11r

2
n̂v i ,n .

In a long time intervalt, the momentum change of partic
i 11 from collisions between particlei and particlei 11 is

PiWt52
11r

2 (
~ i !

~ n̂• x̂!v i ,n , ~9!

where( ( i )(•••) is the summation over all the collisions b
tween thei th and (i 11)th particles. Thex component in Eq.
~9! is the direction along the pipe.

In writing Eq. ~9!, we identified the rate of momentum
transfer from particlei to particle i 11 as an average pres
sure,Pi times the pipe widthW, while t is the time for the
summation. We shall be dealing a lot with sums over co
sions as in equation~9!. To understand them, we shou
realize that( ( i )(•••)/t can be written as the rate of coll
sions betweeni and i 11, ci , times an average over colli
sions^•••& i of this type. Notice that the average over col
sions is very different from the time-average^•••&. For
example,^v i& must be zero in any steady state situatio
However, sincev i must be negative for a collision to occu
then ^v i& i must be negative.

Now go back to Eq.~9!. For the steady state, the mome
tum flux must be a constant, so this summation over a l
time interval must be independent ofi. Thus the momentum
conservation law has the consequence that the pressur
defined by Eq.~9!, is independent ofi. So the equation for
momentum conservation in our system takes the form

2
11r

2Wt(
~ i !

~ n̂• x̂!v i ,n52
11r

2W
ci^~ n̂• x̂!v i ,n& i5P.

~10!

The distribution functions for relative velocity depend on
weakly oni ~Fig. 5!. Thus all components and averages ofvW i
vary in proportion to one another asi is varied. As i ap-
d
i-

-

.

g

, as

proaches the center of the system, the typical value of
momentum transfer per collision declines in proportion

v̄ i . Then, by Eq.~10!, the collision rate increases by goin
inversely as the relative velocity.

Using the same arguments, we can also understand
pressure definition@Eq. ~10!# in a familiar form. Pressure is a
flow of momentum per unity area per unit time. One kind
flow involves transfer of momentum from thei th particle to
the next one. The collision rate is of the order ofv̄ i / l i ,
wherel i is the mean spacing between the two particles. D
ing each collision, the average momentum transfer is prop
tional to v̄ i . From these two facts, the momentum flux
proportional to v̄ i

2/ l i . The average of relative velocity
squared is the temperatureT, while 1/(Wli) is the densityr.
This result is then in the familiar formP5rT. This identi-
fication is an order of magnitude argument. For calculatio
we use the exact result@Eq. ~10!#.

Energy balance. Now let us study the effects of this co
lision on the energy balance. The energy transfers to par
i and particlei 11 are, respectively,

uW i8
22uW i

25
11r

2
~ui 11,n

2 2ui ,n
2 !2

12r 2

4
v i ,n

2 ,

uW i 1182 2uW i 11
2 5

11r

2
~ui ,n

2 2ui 11,n
2 !2

12r 2

4
v i ,n

2 ,

and the energy dissipation is

@~uW i
21uW i 11

2 !2~uW i8
21uW i 1182 !#5

12r 2

2
v i ,n

2 .

We can form an energy conservation equation by bala
ing the energy dissipation with the difference of the ene
flux. However, the above expressions involveuW i ’s which are
correlated and do not belong to the motion in the center
mass frame. To find a consistent description, we want
express this conservation in terms ofvW i ’s. Because the essen
tial dynamic process is determined by the collision rule, E
~6!–~8!, an equation describing the balance of a quadra
form of vW i ’s will incorporate the energy conservation.

In fact, we have, from Eqs.~6!–~8!,

vW i8
22vW i

252~12r 2!v i ,n
2 ,

vW i 1182 2vW i 11
2 5~11r !v i ,nv i 11,n1

~11r !2

4
v i ,n

2 ,

vW i 2182 2vW i 21
2 5~11r !v i ,nv i 21,n1

~11r !2

4
v i ,n

2 .

For the steady state, the total change inv i
2 should vanish,

(
~ i !

~vW i8
22vW i

2!1 (
~ i 11!

~vW i8
22vW i

2!1 (
~ i 21!

~vW i8
22vW i

2!50,

or, equivalently,
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2~12r !(
~ i !

v i ,n
2 1 (

~ i 11! S v i ,nv i 11,n1
11r

4
v i 11,n

2 D
1 (

~ i 21! S v i ,nv i 21,n1
11r

4
v i 21,n

2 D50. ~11!

The first term is from energy dissipation, while the oth
terms take the form of energy transfer.

Profile of v̄ i . We wish to simplify our energy-flow equa
tion by reducing it to an equation for^v i ,n

2 & i . However, cor-

relations betweenvW i andvW i 11 appear in Eq.~11!. We must
eliminate these terms. For an elastic uniform system,
correlation takes a simple form

^v iv i 11&5^~ui 112ui !~ui 122ui 11!&

52^ui 11
2 &

52 1
2 v̄ i v̄ i 11 . ~12!

In the elastic case, it is equally true, for the usual tim
weighted average or for the collision weighted average,

(
~ i 11!

~v i ,nv i 11,n!1 (
~ i 21!

~v i ,nv i 21,n!

52 1
2 ~ni 11

c v i
cv i 11

c 1ni 21
c v i

cv i 21
c !, ~13!

wherev i
c[A( ( i )vW i ,n

2 /ni
c, andni

c is the total number of colli-
sions between particlei and particlei 11, ni

c5ci t. As de-

fined here,v i
c is a collision average ofvW i just before colli-

sions.
Equation~13! has scalars on the left and right hand sid

There are corrections to this relation for inelastic partic
and when there is a spatial variation in the averages.
corrections must be scalars and of orderv̄ i

2 . One correction

is of the order ofe v̄ i
2 . In the other correction,d2/di2 is

applied to v̄ i
2 . However, in virtue of the result in Eq.~1!,

these two terms are really the same. Consequently, we
only one of these two corrections. We write the resulti
structure, in an even parity form, as

(
~ i 11!

~v i ,nv i 11,n!1 (
~ i 21!

~v i ,nv i 21,n!

52
12a1e

2
~ni 11

c v i
cv i 11

c 1ni 21
c v i

cv i 21
c !. ~14!

Now Eq. ~14! can be used to transform Eq.~11! into the
form

2eni
cv i

c21
11r

4
~ni 11

c v i 11
c 21ni 21

c v i 21
c 2!

2
12a1e

2
~ni 11

c v i
cv i 11

c 1ni 21
c v i

cv i 21
c !50,

or, sinceni
cv i

c is a constant independent ofi @see Eq.~10!#,
we find a heat flow equation
r

is

-
at

.
s
e

ed

~624a1!
e

11r
v̄ i5 v̄ i 1122v̄ i1 v̄ i 21 .

In writing the last structure we noticed that different kinds
collision averages all have the samei dependence. Now we
can phrase our result in a continuum form

~624a1!
e

11r
v̄ i5

d2v̄ i

di2
.

In this way, we obtain

v̄ i5 v̄0cosh~bi !, ~15!

where

b25~322a1!e. ~16!

2. Correlations between velocities

Correlations betweenv i ’s are short ranged. Let us onl
consider the nearest neighbor correlation. When there is
dissipation, the only nonvanishing correlation of thev i ’s is
the nearest neighbor average of Eq.~12!. For r ,1, there is a
small correction to that relation. Just as before@see Eq.~14!#,
we write an equation for the average of a nearest neigh
product in the same form as in the elastic case, but wit
correction proportional toe,

^v iv i 11&52
12a2e

2
v̄ i v̄ i 11 , ~17!

where the averages are time averages.
This assumption, with the profile ofv̄ i determined above

completes a description of the motion of grains in the cen
of mass of frame, i.e., part I of the dynamics described
fore. As an example, let us calculate the correlations betw
ui

r ’s, the velocities of particles in the center of mass fram
To illustrate the similarity between this part of the dynam
and conventional thermodynamics, i.e., the independenc
boundary conditions and system sizes, we consider the ce
of mass frame of the 2m particles at the center of the system
Keep in mind that rather than fixed,m can be treated as
variable in the following calculation.

Expressui
r in terms ofv i ’s,

ui
r52

1

2mF (
j 5 i

m21

~m2 j !v j2 (
j 52~m21!

i 21

~m1 j !v j G .

So

2ui
rui 11

r

ui
r21ui 11

r 2
5

A2m2v i
2

A1m2v i
2

,

where

A5F (
j 5 i 11

m21

~m2 j !v j2 (
j 52~m21!

i 21

~m1 j !v j2 iv i G2

.

Let us calculate the correlation betweenu0
r andu1

r . Keeping
only the correlations between nearest neighbor, we have
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j 51

m21

~m2 j !v j2 (
j 52~m21!

21

~m1 j !v j G2L 52K (
j 51

m21

~m2 j !2v j
212 (

j 51

m22

~m2 j !~m2 j 21!v jv j 11L
5~m21!2v̄1

21 v̄m21
2 1 (

j 51

m22

@~m2 j !v̄ j2~m2 j 21!v̄ j 11#2
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^2u0
r u1

r &

^u0
r 21u1

r 2&
5

A12m2

A11m2
. ~18!

Obviously, whenm51, the above ratio is21, because
u0

r 52u1
r at all time. For elastic particles, the ratio can

calculated analytically to be21/(2m21). The inelasticity
changes this dependence. Let us call 2m the ‘‘cluster size,’’
since it corresponds to the usual practice of defining a clu
then separating the motion of particles into mean flow a
fluctuations. From expression~18!, we see that when the
cluster is large enough,A1 can be large comparing tom2;
then the correlations between velocity fluctuations can
large.

B. Numerical results

We carry out numerical simulations to investigate the s
tistical steady state of the system. Here we compare the
merical results with the above theory describing the mot
in the center of mass frame.

1. Quasielastic situations

First let us look at the quasielastic situations, i.e., v
small e. Before testing the profile ofv i ’s, we exam the cru-
cial assumption, Eq.~14!.

Now let us look more sharply at the data. To finda1 , we
do a very accurate determination of the ratio of avera
from the left and the right hand sides of Eq.~14!. This equa-
tion is then solved at eachi value to find a local value ofa1 .
The result is shown in Fig. 6. The theory is right ifa1 is
independent ofi, and wrong if it has an importanti depen-
dence. The figure seems to show that there is an excelle
for the smaller value ofe, and a bad fit for the larger.

From Eq.~16! we see that the important combination d
termining the properties of the profile ofv̄ is 322a1 . But a1
is very close to 1.5, as shown in Fig. 6. Then thea1 effect
changes the prefactor in Eq.~16! from 3 to 322a1 , i.e., by
a factor of 50. The velocity correlations renormalizee, and
reduce the energy dissipation.

Also a1 is essentially a local correlation effect originate
from the inelastic collisions. For an elastic system with co
parable inhomogeneity, there is also a correction to the fa
2 1

2 in Eq. ~14!, but the correction is usually an order o
magnitude smaller than the effects we are seeing here.
er
d

e

-
u-
n

y

s

fit

-
or

A test of Eq.~15! is shown in Fig. 7. Analysis like this
permits the determination of the slope like the one in Fig
as a function ofe. We have called this slopeb. Figure 8
shows that the numerical values give ane dependence forb
which fully supports the theory. However, notice that all th
analysis applies to very small values ofe. Section III B 2
considers more inelastic situations.

2. Stronger inelasticity regime

We look at smallerr ’s. To avoid inelastic collapses, w
limit our r to be greater thanr c . For a system of 100 par
ticles with extremely high density,r c'0.95.

When r becomes smaller, there is a cluster of partic
moving around the center of the pipe, all with about the sa
velocity. The system is in a state far away from equilibriu
Also, it is very nonuniform—the particles around the cen
are highly correlated, while those near the boundaries m
independently; the energy flux is strong near the end wa
but rather weak inside the system. As a consequence,
PDF’s of quantities change significantly from particles ne
the center to those near the boundaries, e.g., the PDF’
ui ’s, though there is no large change in the PDF’s ofv i ’s.

Figure 9 once again plots a quantity which should be l
ear in i if the theory, Eqs.~15!, is right. Now, for this larger
value ofe, there are substantial variations in slope. It appe
that the theory does not apply for the 15 particles neares

FIG. 6. Numerical results for 1.52a1 for a high density system
with 100 particles averaged over 23109 collisions.a1 is defined in
Eq. ~14!. L is for r 50.995;1 is for r 50.95. The line is for 1.5
2a150.029 from the fit in Fig. 8.



le
th
.

u
to

a

th
n

-

e

r
at

e.,

nu-
ion
the

ost
e

ary
in
wn

to
the
ons

nu-
the

o
t

olic
ted

7594 PRE 58TONG ZHOU
each of the boundaries, and that it might have small troub
elsewhere. This discrepancy is also shown when we plot
slope, calculated from doing numerical derivatives on Fig
to give b as a function ofi. This plot is given as Fig. 10.

The discrepancy between the theory and numerical res
for strong inelasticity is not surprising. Though taking in
account the correlations between fluctuations, the theory
still based on concepts of conventional fluids—no intern
structures are considered. However, when inelasticity
strong, the dynamics is affected by intrinsic structures of
collection of the particles, and the whole system may belo
to a different phase@17#. A satisfactory theory must incorpo
rate this feature.

Now let us look at the velocity correlations. Only th
nearest neighbor correlation@Eq. ~17!# is considered. The
theory leads to expression~18! of the correlation betweenu0

r

and u1
r , which is independent of system sizes or bounda

conditions. To test this expression, we numerically calcul

FIG. 7. Fit to a hyperbolic cosine curve of the profile of thev̄ i

for a high density system of 100 particles andr 50.9995. To check

Eq. ~15!, we take the inverse of the hyperbolic cosine ofv̄ i / v̄0 and
plot the result as a function ofi. The straight line indicates a fit to
the theory. In the theory, the slope is proportional to the square r
of e. Here the slope is 0.0055, which is equal to the square roo
0.06e.

FIG. 8. Thee dependence ofb for systems withN5100. The
curve is the theoretical fit, the square root of 0.058e. @See Eq.~15!.#
s
e

9

lts

is
l

is
e
g

y
e

this correlation with respect to different cluster sizes, i.
different m, with Eq. ~18!, and with the profile ofv̄ i calcu-
lated numerically. The comparison between theory and
merical result is shown in Fig. 11. We see the correlat
increases with increasing cluster size. The comparison is
best fora250.6. When the cluster size is large enough, m
of the total motion belongs to the correlated motion. W
want to point out that this curve is independent of bound
conditions. Also for systems with different sizes, we obta
sections of different length from this same curve, as sho
in the figure.

We want to point out that the major point of Fig. 11 is
demonstrate that part of the dynamics, the motion in
center of mass frame, is independent of boundary conditi
and system sizes. The agreement between theory and
merical results can not be viewed as a strong support for
details of the theory because the profile ofv̄ i is from numeri-
cal calculations, rather than Eq.~15!; also, the valuea2

ot
of

FIG. 9. Fit to a hyperbolic cosine curve of the profile ofv̄ i for a
high density system of 100 particles andr 50.95. This is a higher-
e analog of Fig. 7. The straight line corresponds to a hyperb
cosine profile curve, and its slope is 0.054, a value extrapola
from the expression for quasielastic cases~Fig. 8!. However, the
straight-line fit is not very good, especially near the boundary.

FIG. 10. The position dependence of the prefactorb in a high
density system with 100 particles andr 50.95. The line isb
50.054, extrapolated from the quasielastic cases.



a

n
an
os
a
a

m
nu
ns
F

for

e-
ss

ass
ass

t
in

the

be-

as

f-

bi-

ich

of

a-

e
he

th

PRE 58 7595VELOCITY CORRELATIONS IN GRANULAR MATERIALS
50.6 is a fitting parameter. The theory captures some qu
tative features of the dynamics, but is still incomplete.

IV. MOTION OF THE CENTER OF MASS

Because the total momentum of the system can be o
changed by collisions between the outermost particles
the walls, and the motion of the outermost particles is cl
to that of an elastic system, the motion of the center of m
should also be close to that of an elastic system. For
elastic system,

^u2&5K S (
i

ui /ND 2L 5u* 2/N, ~19!

whereu* is the rms speed of the outermost particle. Fro
Fig. 12 we see this estimate is about right, though the
merical factor must be calculated from detailed distributio
The result also seems sensitive toe. This is because the PD

FIG. 11. The cluster size dependence of ratio~18!. The system
is in a low density regime, withr 50.94. * is from time average
results of a simulation with 100 particles andL is from a simula-
tion with 60 particles. The curve is from Eq.~18! with a250.6.

FIG. 12. Test of Eq.~19! for two boundary conditions for high
density systems withN5100. The ratios are all around 1, as w
expect from our order of magnitude argument. The * is for t
Boltzmann boundary condition, and theL is for the fixed speed
condition. The motion of the center of mass depends strongly on
boundary conditions.
li-

ly
d
e

ss
n

-
.

for the velocity of the outermost particle is more skewed
higher values ofe, and so the ratio betweenu* and the
momentum transferred into the system from the wall d
pends one. Notice that the motion of the center of ma
depends strongly on the boundary condition.

Suppose the motion of particles in the center of m
frame is independent of the motion of the center of m
itself, i.e.,u is uncorrelated tov i ’s; then

^ui
2&5^ui

r2&1^u2&.

Simulations show that the profile ofv̄ i is nearly independen
of boundary conditions, and so is the motion of the system
the center of mass frame. However,^u2& depends sensitively
on the boundary conditions, and so does the motion of
particles in the lab frame, i.e., the profile of^ui

2& ~Fig. 3!.
Due to the motion of the center of mass, correlations

tweenui ’s are enhanced, comparing to those betweenui
r ’s:

^2uiui 11&

^ui
21ui 11

2 &
5

2^ui
rui 11

r &12^u2&

^ui
r21ui 11

r 2&12^u2&

or

v i
2

^ui
21ui 11

2 &
5

v i
2

^ui
r21ui 11

r 2&12^u2&
5Ri . ~20!

The ratioRi between random motion and total motion w
defined by us in Eq.~5!.

Behavior of the ratio R0

Whenne is small, we can expand expression~20!, using
Eqs.~15!, ~18!, and~19!. Keeping terms linear ine, we have

2 ln~R0!5
e

2n
$@~n2a!21~n21!#~322a1!

12~n21!~n22!a2/3%, ~21!

where 0,a,1. From Eq.~21! we see that whenne is small,
2 ln(R0) is proportional tone.

Numerical results of2 ln(R0) are shown in Fig. 13. We do
see that2 ln(R0) is proportional toe for very smalle. How-
ever, whene is large, where we expect strong nonlinear e
fects, it is proportional toe2.

As we argued in Sec. II, there are two important com
nations ofN and e. The productNAe describes how tem-
perature decays toward the center of the system, wh
agrees excellently with the numerical results whene is very
small. However, Eq.~21! shows that in this limit, only the
product Ne appears in the final expression forR0 . This
seems to suggest thatR0 , i.e., the degree of the coherence
the particles’ motion, is determined by the productNe ~Figs.
14 and 15!. These two figures exhibit rather interesting fe
e
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tures of the dynamics@25#, though we do not have a satis
factory understanding of them.

V. CONCLUSION

In this paper, we investigated the steady state of a for
granular system in a thin pipe. Correlations between velo
ties of granular particles are shown to be important fo
correct understanding of such systems. For systems in
quasielastic regime, correlation is small, but not negligi
because the deviation from equilibrium is also small.~Cor-
relation is usually ignored in this regime, see, for examp
Ref. @6#. We have shown here that it cannot be ignored i
self-consistent theory.! For systems with stronger inelastic
ity, correlation is crucial for a correct theory. Our theo
describes the dynamics satisfactorily in the quasielastic lim
For stronger inelasticities, numerical results show quite
teresting behaviors of the system; however, our theoret
understanding is only qualitative at this stage.

FIG. 13. The logarithm of ratio~5! for i 50 vs e. 1 is for
N5100, * is forN570, andL is for N540. All three are for low
density systems with the Boltzmann boundary condition. T
dashed line indicates a dependence ln(R0)}e, and the dotted line
indicates a dependence ln(R0)}e2.

FIG. 14. The curves shown in Fig. 13 can be shifted to over
by changing thex axis frome to e f (N), where f (N) is a function
of the total number of particles in the system.f (100)51. Three
curves are shown, they are all for low density systems with Bo
mann boundary conditions.1 is for N5100, * is for N570, and
L is for N540.
d
i-
a
he
e

,
a

it.
-
al

Characteristicly for granular systems, fluctuations are
portant at all scales, enhanced by the combined effect
momentum conservation and nonuniformity. Also, the se
ration between fluctuations and mean flow is quite nontriv
The mean motion~correlated! and the fluctuations relative to
it have to be separated strictly speaking at every instan
time and at any position. Ideally, the fluctuations should
uncorrelated. But if the mean flow is an average of a coll
tion of particles, the correlations between the fluctuatio
depend on the size of the collection.

An important issue is the existence of a universal desc
tion, which is not common for nonequilibrium systems. T
separation of the dynamics into motion in the center of m
frame and the motion of the center of mass itself is qu
suggestive.

The motion of the center of mass cannot be univers
Momentum conservation decides that the velocity of the c
ter of mass can be changed only by interaction between
ticles and external effects. So it depends sensitively on
details of boundary conditions, as shown in this paper,
cannot be universal.

This is true for both elastic systems and inelastic on
However, in elastic systems, every mode has the sa
strength due to the equipartition law of the energy. The m
tion of the center of mass is just one mode out ofNd modes,
and its effect is negligible for a macroscopic system. In
dissipative system, on the other hand, being the only c
served mode, it can dominate over all other modes. Con
quently, a universal description does not exist for the dyna
ics as a whole.

Still, if we look at the otherN21 modes which are per
pendicular to this nonuniversal mode, we may discover so
universal features. The independence of the motion in
center of mass frame on the boundary conditions and sys
sizes is a hint that this part of the dynamics may be univer
Further study is being carried out.

The thin pipe model used here greatly simplifies both
numerical and analytical calculations. The low density v
sion of it may not have higher-dimensional analogies, wh
the sequence of particles is necessarily broken. However
high density version can be modified for a highe
dimensional situation, where the sequence can be kept.

e

p

-

FIG. 15. The functionf (N) from Fig. 14. f (N) is proportional
to N with a small adjustment due to boundary effects.
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